×

Воздействие молекулярного водорода на сердечно-сосудистую и центральную нервную систему

5811 просмотр (ов)
4.12.2021 |
  1. 5
  2. 4
  3. 3
  4. 2
  5. 1
(10 голосов, в среднем: 4.9 из 5)
молекулярный водород нервная система

Перевод: Сердюк Анастасия
Ссылка на оригинал: https://pubmed.ncbi.nlm.nih.gov/33333951/

В этом обзоре основное внимание уделяется влиянию водорода на сердечно-сосудистую и центральную нервную систему и обобщаются текущие знания о его действиях включая регуляцию окислительно-восстановительной и внутриклеточной передачи сигналов, изменение экспрессии генов и модуляцию клеточных ответов. Также в этом обзоре обобщены текущие знания о роли молекулярного водорода в модуляции аутофагии и ремоделировании тканей, опосредованными матриксными металлопротеиназами.

Повышенное производство активных форм кислорода и окислительный стресс – ключевые факторы, способствующие развитию заболеваний сердечно-сосудистой и центральной нервной систем. Молекулярный водород признан новым терапевтическим средством, и его положительные эффекты при лечении патологий документально подтверждены как экспериментальными, так и клиническими исследованиями.

Терапевтический потенциал водорода объясняется несколькими основными молекулярными механизмами:

  • регуляция окислительно-восстановительного потенциала;
  • регуляция внутриклеточной передачи сигналов;
  • изменение экспрессии генов;
  • модуляция клеточных ответов (например: аутофагия, апоптоз, ремоделирование тканей).

Молекулярный водород и его использование в терапии

Водород – это двухатомный газ без цвета и запаха. У млекопитающих водород вырабатывается в кишечнике с помощью определенных кишечных бактерий. Молекула водорода очень маленькая (молекулярная масса 2 Da), электрически нейтральная и неполярная. 

Такие свойства позволяют водороду легко проникать в клетки и быстро распространяться по организму через все биологические мембраны. Таким образом, молекула водорода способна проникать в субклеточные компартменты, такие как митохондрии и эндо/саркоплазматический ретикулум, а также в ядра, которые являются первичными участками генерации активных форм кислорода (АФК) и повреждения ДНК, соответственно. Более того, он может легко преодолевать гематоэнцефалический барьер, плацентарный барьер и гемато-тестикулярный барьер.

В настоящее время молекулярный водород признан новым терапевтическим средством так как его применение оказывает защитное действие при сердечно-сосудистых заболеваниях [1,2], нейродегенеративных заболеваниях [3], воспалительных заболеваниях [4], нервно-мышечных расстройствах [5], метаболическом синдроме [6], диабете [7,8], заболевании почек [9,10] и раке [11]. Защитные эффекты молекулярного водорода во многом связаны с его антиапоптотическим, противовоспалительным и антиоксидантным действием.

Молекулярный водород не имеет известных побочных эффектов на клетки. Его использование не нарушает метаболизм и окислительно-восстановительные реакции в клетках, внутриклеточную передачу сигналов (например, сигнальную роль активных форм кислорода) [12] или физиологические метаболические и ферментативные реакции. В терапевтических концентрациях водород имеет очень низкую реактивность с другими газами и не вступает в реакцию с оксидом азота (NO •). Это позволяет использовать его в синергии с другими терапевтическими газами, включая ингаляционные анестетики, и дает возможность одновременного введения водорода с NO •.

Введение молекулярного водорода можно осуществлять несколькими способами: ингаляции молекулярным водородом [13], нанесение раствора, богатого водородом [3], или введение глазных капель, содержащих водород [14]. Более удобный и доступный метод – использование воды, обогащенной водородом. Водородная вода также является более удобным средство для длительной водородной терапии.

Терапевтические свойства молекулярного водорода – исследования

Терапевтические эффекты молекулярного водорода были продемонстрированы не только в экспериментах на модели животных, но и в клинических испытаниях. В одноцентровом проспективном открытом слепом исследовании Katsumata et al. [15] изучали влияние водородных ингаляций на размер инфаркта и неблагоприятное ремоделирование левого желудочка после первичного чрескожного коронарного вмешательства (ЧКВ) при инфаркте миокарда с подъемом сегмента ST (ИМпST). Было обнаружено, что вдыхание 1,3% H2 во время ЧКВ способствует обратному ремоделированию левого желудочка через шесть месяцев после ИМпST.

Терапевтические эффекты H2 были также продемонстрированы в двойном слепом плацебо-контролируемом исследовании метаболического синдрома [6]. Употребление воды, обогащенной H2, в течение 24 недель значительно снизило уровень холестерина в крови, глюкозы, гликированного гемоглобина A1c в сыворотке крови и улучшило биомаркеры воспаления и окислительного стресса по сравнению с группой плацебо. 

В аналогичном, более раннем исследовании Kajiyama et al [16] сообщили, что употребление воды, обогащенной H2, в течение восьми недель значительно снижает уровни модифицированных липопротеинов низкой плотности (ЛПНП), 8-изопростана в моче, концентрации окисленных ЛПНП и свободных жирных кислот в сыворотке крови, а также адипонектина и внеклеточной супероксиддисмутазы в плазме у пациентов с сахарным диабетом 2 типа. После терапии H2, показатели перорального глюкозотолерантного теста нормализовались у четырех из шести пациентов с нарушением толерантности к глюкозе. 

В другом рандомизированном, двойном, слепом, плацебо-контролируемом исследовании изучали эффективность питья водородной воды в течение 48 недель на модели болезни Паркинсона (БП) у японских пациентов, принимающих препарат Лаводопа [17]. Несмотря на небольшое количество пациентов и короткую продолжительность испытания, результаты явно продемонстрировали положительный эффект водородной воды. Было показано, что питье водородной воды не имеет побочных эффектов и отлично переносится организмом. Также употребление водородной воды значительно улучшило показатели по унифицированной рейтинговой шкале болезни Паркинсона (UPDRS) для пациентов с БП. Sakai et al [18] продемонстрировали, что молекулярный водород – полезный модулятор функции кровеносных сосудов. Данные, полученные в ходе исследования, подтверждают, что сосудистая сетка испытуемых, ежедневно пьющих воду с высокой концентрацией водорода, лучше защищена от вредных АФК, вызванных напряжением сдвига. Водород оказывает защитные эффекты путем снижения вредных АФК, сохранения биодоступности оксида азота (NO •) и поддержания вазомоторной реакции, опосредованной NO •.

Воздействие водорода на сердечно-сосудистую систему

Заболевания сердечно-сосудистой системы относятся к числу наиболее серьезных медицинских проблем и представляют собой основную причину осложнений и болезней в современном обществе [19]. Повышенное производство АФК и окислительный стресс являются ключевыми факторами, способствующими развитию сердечно-сосудистых заболеваний, таких как гипертония [20], гипертрофия сердца [21,22] и сердечная недостаточность [23]. Одной из ключевых, но предотвратимых причин сердечно-сосудистых заболеваний является гипертензия, которая, без соответствующего лечения, может привести к ремоделированию сердца и последующей гипертрофии левого желудочка и сердечной недостаточности [24].

Ишемия-реперфузия также играет важную роль в индукции ремоделирования сердца. Реперфузия индуцируется притоком крови к сердцу после периода ишемии, и связана с увеличением окислительного стресса, переизбытком кальция, воспалениями и апоптозом [25, 26, 27, 28]. Это часто приводит к нарушению функции сердца что, в свою очередь, может привести к инфаркту миокарда и “злокачественным аритмиям”.

В различных исследованиях использовалось несколько потенциальных стратегий профилактики, контроля и лечения сердечно-сосудистых заболеваний, включая снижение повышенной продукции реактивных форм кислорода (ROS) и окислительного стресса, а также нацеливание на сигнальные пути, модулируемые ROS [29,30,31,32]. Было отмечено, что клиническое применение молекулярного водорода улучшает состояние при сердечно-сосудистых заболеваниях, связанных с окислительным стрессом, так как водород обладает мощными антиоксидантными, противовоспалительными и антиапоптотическими свойствами.

О положительном влиянии молекулярного водорода на заболевания сердечно-сосудистой системы сообщалось в нескольких исследованиях. Ингаляции водородом значительно улучшили функцию сердца и мозга на модели остановки сердца у крыс [1], а хроническое лечение водородным физиологическим раствором (HRS) уменьшило гипертрофию левого желудочка у самопроизвольно гипертонических крыс [33]. Защитные эффекты водорода на функцию левого желудочка также наблюдались в других исследованиях, демонстрирующих его способность уменьшать ремоделирование левого желудочка, вызванное перемежающейся гипоксией [34] или ишемией/реперфузией (I/R) [13]. 

В нескольких исследованиях была продемонстрирована положительная роль молекулярного водорода в модулировании ответов миокарда при ишемии/реперфузии. В исследованиях использовались различные методы применения водорода, такие как ингаляция газообразного водорода [13] или внутрибрюшинное введение водородного физиологического раствора. [35]. Вдыхание газообразного водорода во время реперфузии уменьшило размер инфаркта на модели сердечного повреждения I/R у крыс [13], а также у собак [36]. В модели на собаках было показано, что кардиозащитные эффекты водорода реализуются через открытие митохондриальных, АТФ-чувствительных калиевых каналов (митК-АТФ) и последующее ингибирование проницаемости митохондриальных переходных пор [36]. Исследование влияния водорода in vivo на модели повреждения I/R миокарда у крыс показало, что внутрибрюшинное применение HRS уменьшает размер инфаркта и сердечную дисфункцию. Повреждение I/R вызвало чрезмерное высвобождение провоспалительных молекул (TNF-α, IL-1β, IL-6 и HMGB1), а кардиозащитные эффекты водорода были связаны со снижением этих I/R-индуцированных воспалительных реакций в миокарде.

Другое исследование продемонстрировало, что молекулярный водород усиливает защитный эффект гипоксического посткондиционирования (HPostC) при инфаркте на изолированных сердцах крыс [2]. Инфузия раствора на основе буфера Кребса-Хенселейта с молекулярным водородом во время HPostC дополнительно уменьшила размер инфаркта, уменьшила аритмию и значительно повлияла на восстановление сердечной функции по сравнению с использованием исключительно HPostC.

В одной группе было обнаружено, что газообразный водород способен уменьшать повреждение I/R миокарда у крыс, независимо от ишемического посткондиционирования. По сравнению с посткондиционированием водород показал более выраженный защитный эффект при повреждении I/R. Это связано с уменьшением стресса эндоплазматического ретикулума и подавлением чрезмерной аутофагии [39]. Также было обнаружено, что лечение водородным физраствором уменьшает повреждение миокарда и апоптоз в сердечной ткани, вызванные сердечно-легочным шунтированием (CPB). Имеющиеся данные указывают на то, что водородный физраствор оказывает терапевтический эффект за счет противоположного воздействия на два различных сигнальных пути: ослабления пути PI3K / Akt [40] и активации передачи сигналов JAK2 / STAT3 [41].

Молекулярный водород и центральная нервная система

Неполярная природа и низкая молекулярная масса водорода позволяют ему легко проникать через все биологические мембраны включая гематоэнцефалический барьер (ГЭБ). Это чрезвычайно важно для центральной нервной системы (ЦНС), так как ГЭБ играет ключевую роль в защите ЦНС. Данные исследований показали, что окислительный стресс, активация матриксных металлопротеиназ (MMP) и воспаление действуют как механизмы, связывающие с распадом ГЭБ некоторые патологические состояния, такие как сердечно-сосудистые заболевания и гипертонию [42,43].

Жизненно важным для регуляции проницаемости ГЭБ является целостность эндотелиальных клеток. Нарушение этой целостности может привести к дисфункции ГЭБ, что вызывает неврологические расстройства, такие как травмы головного мозга и нейродегенеративные расстройства, и играет значительную роль в патогенезе сосудистой деменции [44,45]. Нарушение функции ГЭБ сопровождается экстравазацией циркулирующих нейровоспалительных молекул из крови в мозг, что увеличивает риск повреждения головного мозга. Известно, что некоторые цитокины и хемокины, такие как IL-6 и TNF-α, поступают из крови в мозг через ГЭБ [46]. Более того, некоторые исследования показали, что циркулирующие периферические иммунные клетки, то есть макрофаги, проникают в ЦНС [47, 48]. Перекрестные помехи между сигнальными каскадами, лежащими в основе окислительного стресса, и воспалительные реакции одни из ключевых факторов нейродегенеративных расстройств [49,50].

Способность молекулярного водорода проникать через ГЭБ и его неограниченный доступ к ЦНС – уникальна и присуща лишь немногим терапевтическим веществам. Было обнаружено, что ингаляции газообразным водородом уменьшают окислительный стресс и нарушения ГЭБ путем подавления и дегрануляции тучных клеток [51]. Помимо этого, водород уменьшает отек головного мозга и неврологический дефицит [51]. Также было обнаружено, что водородный физраствор уменьшает отек мозга и объем инфаркта при неонатальном повреждении головного мозга у мышей. Другие исследования показали, что добавление молекулярного водорода уменьшает клинические проявления нервно-мышечных и нейродегенеративных заболеваний [17,52].

Защитные эффекты молекулярного водорода в центральной нервной системе связаны с модуляцией клеточных ответов на стрессовые условия и реализуются через несколько клеточных механизмов. В 2007 году, Ohsawa et al [53] сообщили, что газообразный молекулярный водород действует как антиоксидант с выраженными профилактическими и лечебными свойствами, избирательно снижая уровни сильных окислителей в клетках, таких как гидроксильные радикалы (• OH) и пероксинитрит (ONOO–) [53]. Благодаря защитным свойствам, молекулярный водород способен подавлять ишемическое реперфузионное повреждение в головном мозге. Молекулярный водород избирательно снижает уровни высокотоксичных гидроксильных радикалов и пероксинитрита, при этом не влияет на супероксид, пероксид водорода или оксида азота [53].

При рассмотрении механизмов противовоспалительного действия молекулярного водорода в головном мозге, необходимо учитывать как нейроиммунологические взаимодействия, так и перекрестные помехи при окислительном стрессе. Важные защитные эффекты водорода включают буферизацию окислительного стресса, снижение активности эндоплазматического ретикулума (ER), подавление стресса, ингибирование апоптоза, подавление воспалительных реакций и регуляцию механизма аутофагии.

Действие молекулярного водорода – механизмы и клеточные системы

Воздействие молекулярного водорода на различные заболевания можно объяснить несколькими молекулярными механизмами. Изначально сообщалось, что водород селективно устраняет • ОН и пероксинитрит [53]. Эти реактивные молекулы являются главными, непосредственными мишенями водорода. Тем не менее, все больше данных свидетельствует о том, что водород также может действовать как сигнальный модулятор [54,55,56], а некоторые молекулы являются медиаторами, которые вторично изменяются при введении водорода. Способность молекулярного водорода нейтрализовывать свободные радикалы и модулировать передачу сигналов тесно связана с модуляцией редокс-сигнализации и изменениями в экспрессии генов [54]. 

Далее мы сосредоточимся на роли молекулярного водорода в модуляции редокс-статуса, а также на внутриклеточной передаче сигналов белками и влияние этого на экспрессию генов, аутофагию и матричные металлопротеиназы.

Молекулярный водород как регулятор редокс-сигнала

Молекулярный водород является антиоксидантом, который защищает клетки от окислительного стресса избирательно снижая уровень гидроксильных радикалов (ОН) и пероксинитрита (ONOO-) в клетках [53]. Стехиометрическая реакция между H2 и гидроксильными радикалами:

H2 + 2 • OH => 2 H2O

Хотя водород устраняет пероксинитрит не так эффективно, как он устраняет гидроксильные радикалы, было обнаружено, что водород эффективно снижает образование нитротирозина, который индуцируется оксидом азота (NO •) через образование пероксинитрита [57,58]. NO • представляет собой газообразную молекулу, которая также оказывает терапевтическое воздействие, включая расслабление кровеносных сосудов и ингибирование агрегации тромбоцитов [59]. Однако, при более высоких концентрациях, NO • может стать токсичным, поскольку он приводит к продуцированию нитротирозина, что нарушает функцию белков. Таким образом, действие водорода частично заключается в уменьшении производства нитротирозина [58].

Молекулярный водород снижает окислительный стресс не только напрямую, но и косвенно, активируя антиоксидантные системы, включая гемоксигеназу-1 (HO-1) [60,61], супероксиддисмутазу (SOD) [7,9], каталазу [62] и миелопероксидазу [62,63]. На модели черепно-мозговой травмы у крыс было замечено, что положительные эффекты от ингаляций водородом опосредованы снижением окислительного стресса и стимуляцией ферментативной активности эндогенных антиоксидантов SOD и каталазы [64]. 

Благоприятное влияние водорода на активность антиоксидантных ферментов также наблюдали Guan et al. [9]. Они обнаружили, что молекулярный водород защищает почки от повреждения, вызванного хронической перемежающейся гипоксией. Было показано, что водород уменьшает окислительные повреждения, усиливая активность SOD и глутатионпероксидазы (GSH-Px) и увеличивая соотношение GSH : GSSG (глутатион : окисленный глутатион). Воздействие водорода также связано со снижением уровней малонового диальдегида (МДА) (продукт окислительного стресса).

В других исследованиях антиоксидантные свойства молекулярного водорода подтверждаются активацией пути Nrf2 / ARE [54,65,66]. Путь Nrf2 / ARE играет ключевую роль в защите организма от окислительного стресса и в регуляции транскрипции многих антиоксидантных и цитопротекторных белков [49]. Nrf2 – транскрипционный фактор, играющий важную роль в редокс-чувствительной регуляции экспрессии некоторых эндогенных антиоксидантов и детоксикационных ферментов [67,68]. В нормальных условиях Nrf2 подавляется белком Keap1, который обеспечивает Cullin3 / Rbx1-зависимое полиубиквитинирование Nrf2 и его последующую протеасомную деградацию [69]. После воздействия стресса на клетки, электрофильные молекулы модифицируют цистеиновые остатки Keap1, что препятствует подавлению Nrf2 белком Keap1. Без убиквитинации, Nrf2 перемещается в ядро, где, с небольшими белками MAF или JUN образует гетеродимеры. Затем связывается с элементом антиоксидантного ответа (ARE), то есть, с промоторной областью многих антиоксидантных генов, и инициирует их транскрипцию [19 , 70].

Регуляция пути Nrf2/ARE обычно зависит от продолжительности и интенсивности окислительного стресса. Вышеупомянутые эффекты проявляются, прежде всего, при остром стрессе. Продолжительный стресс подавляет активность Nrf2, а также снижает или останавливает антиоксидантные реакции и детоксификацию. Киназа гликоген-синтазы 3β (GSK-3β) играет важную роль в этой модуляции, фосфорилируя остатки треонина Fyn киназы. Затем Fyn киназа перемещается в ядро, где она фосфорилирует Nrf2, что приводит к перемещению Nrf2 из ядра в цитоплазму, где он подвергается убиквитинированию и деградации протеасом [71].

Важная роль пути Nrf2 в терапевтическом воздействии водорода подтверждается результатами исследования, показывающего, что газообразный водород снижает гипероксическое повреждение легких через путь Nrf2 и за счет индукции Nrf2-зависимых генов, таких как HO-1 [66]. Результаты также продемонстрировали, что водород оказывает сильное антиоксидантное воздействие на головной мозг после очаговой ишемии-реперфузии головного мозга за счет повышения уровня HO-1 [72]. Более того, данные показали, что водородный физиологический раствор оказывает нейропротекторное воздействие путем активации HO-1 и сигнального пути Nrf2/ARE на модели аутоиммунного энцефаломиелита у мышей [73].

Молекулярный водород и митохондрии

Митохондрии – органеллы, играющие важную роль во многих клеточных функциях, таких как выработка энергии (АТФ), дифференцировка клеток, регуляция гомеостаза кальция и передачи сигналов [74,75,76]. Они также участвуют в клеточных реакциях на стресс, связанных с клеточной гибелью.

Регуляция апоптоза и аутофагии митохондриями [77,78, 79] является важным биологическим процессом. Дисфункция митохондрий способствует развитию различных заболеваний. Митохондрии известны как основные источники производства клеточной энергии АТФ. В процессе окислительного фосфорилирования кислород (O2) превращается в воду (H2O), однако небольшое количество O2 превращается в супероксид-анион-радикалы. С помощью супероксиддисмутазы (SOD) супероксид разлагается и превращается в O2 и пероксид водорода (H2O2).

Физические свойства молекулярного водорода позволяют ему эффективно проникать в субклеточные компартменты, такие как митохондрии [80]. Митохондрии – важная цель для терапии, поэтому небольшую молекулу водорода можно применять для лечения заболеваний, связанных с митохондриями.

Эффекты молекулярного водорода были изучены в нескольких исследованиях. Было обнаружено, что молекулярный водород способен подавлять генерацию супероксида в комплексе I на модели изолированных митохондрий [81]. Те же авторы продемонстрировали, что присутствие молекулярного водорода в культуральной среде снижает мембранный потенциал живых клеток легких человека (A549) [81].

Основываясь на результатах исследований in vitro и in vivo, авторы предположили, что высвобождаемые водородом электроны, могут передаваться кластеру железо-серы N2 в НАДН-дегидрогеназный комплекс. Таким образом, H2 может запускать конформационные изменения в этом комплексе и влиять на трансмембранный перенос протонов и/или разобщение мембранного потенциала. В связи с этим исследователи предположили, что H2 может функционировать как выпрямитель электронного потока в митохондриях при патологических состояниях, когда накопление электронов приводит к образованию АФК [82].

Исследования также продемонстрировали положительное воздействие молекулярного водорода на митохондрии за счет активации митохондриального развернутого белкового ответа (mtUPR). mtUPR – это защитный механизм, который активируется при стрессе в митохондриальном матриксе, когда поврежденные белки накапливаются в чрезмерном количестве в аппарате Гольджи [83]. Было обнаружено, что молекулярный водород активирует этот митохондриальный защитный механизм индуцируя экспрессию белков, связанных с mtUPR, и модификацию H3K27 [66,84]. Положительное воздействие водорода было также задокументировано Luchi et al. [85]. Они обнаружили, что молекулярный водород способен предотвращать клеточную гибель, вызванную трет-бутилгидропероксидом, уменьшая митохондриальную дисфункцию и перекисное окисление липидов [85].

Механизмы действия молекулярного водорода могут объяснить результаты недавних исследований, которые задокументировали защитные эффекты водородного физиологического раствора на модели диабетической периферической нейропатии у крыс. Защитное действие водорода было связано с активацией митохондриальных АТФ-чувствительных калиевых каналов [86]. Более того, применение 5-гидроксидеканоата, митохондриального АТФ-чувствительного ингибитора калиевых каналов, подавляет нейрозащитное действие водородного солевого раствора. АТФ-чувствительные калиевые каналы находятся в плазматической мембране и внутренней мембране митохондрий [87]. Эти митохондриальные каналы играют важную роль в защите клеток миокарда от повреждений [88], а их активация может подавлять апоптоз, индуцированный пероксидом водорода [89].

Nrf2 – важный регулятор редокс-сигнализации. Одно из исследований показало, что водородный физиологический раствор может уменьшить митохондриальную дисфункцию активируя путь Nrf2 [90]. Исследователи обнаружили, что сепсис-ассоциированная энцефалопатия (SAE) приводит к митохондриальной дисфункции. Водородный физиологический раствор способен улучшать функцию митохондрий путем увеличения потенциала митохондриальной мембраны (MMP), коэффициента контроля дыхания (RCR) и высвобождения АТФ. Кроме того, водородный физиологический раствор уменьшает изменения, вызванные SAE, и производство ROS. Воздействие водорода на путь Nrf2 подтверждено исследованием, которое показало, что водород оказывает защитное воздействие на мышей дикого типа, но не на нокаутных мышей с отсутствием Nrf2.

Gvozdyakova at el. [91] продемонстрировали, что молекулярный водород стимулирует функцию митохондрий миокарда у крыс. Питьевая вода, обогащенная молекулярным водородом, увеличивала выработку АТФ в комплексах I и II в митохондриях сердечной мышцы у крыс. Точно так же, после введения водородной воды, увеличивались уровни кофермента Q9 в плазме, тканях миокарда и митохондриях.

Выводы

Терапевтический потенциал молекулярного водорода в лечении различных заболеваний можно объяснить несколькими молекулярными механизмами. Текущая информация указывает на то, что защитное действие молекулярного водорода объясняется модуляцией антиоксидантной клеточной защиты (антиоксидантные и цитопротекторные гены), включая внутриклеточную и внеклеточную редокс-сигнализацию.

Однако, влияние водорода на сигнальные пути и адаптивные клеточные ответы (например, аутофагию) не всегда одинаковое: был продемонстрирован как стимулирующий, так и ингибирующий эффект.

Необходимо больше исследований для детального понимания регулирующей функции молекулярного водорода и точных механизмов, с помощью которых он влияет на клеточные функции при патологических состояниях.

УЗНАТЬ БОЛЬШЕ О ВОДОРОДНОЙ ВОДЕ

Нужна консультация по выбору подходящего генератора водородной воды?
Будем рады помочь вам! Звоните нам!

Сложно сделать выбор? Напишите нам, и мы вместе определим, какой из наших приборов Вам подойдет больше.

МАГАЗИН

H2 Life генератор водородной воды (white)
10500грн. (256 €)
Buder генератор водородной воды Япония
18000грн. (438 €)
Водородный генератор с мембраной Brilliance Lux
6500грн. (158 €)
Генератор Водородной Воды Водородный Кувшин с мембраной Brilliance
10000грн. (243 €)

Облако тегов

H2 вода ORP Антиоксиданты Антиэйдж Вода с водородом - водородная вода Водородная Вода - что это Водородная вода: что это такое Водородная вода anti-aging Водородная вода для кожи Водородная вода для метаболизма Водородная вода для тела Водородная вода молодость Водородная вода польза Водородный генератор водорода Водородный стакан ОВП воды - статьи ОРВИ Портативный генератор водородной воды Портативный генератор водородной воды, статьи вода водород вода овп водород водород вода (водородная вода) водородная бутылка - генератор водорода водородная вода водородная вода доказательная медицина водородная вода и депрессия водородная вода использование водородная вода исследования водородная вода облегчает боль водородная вода отзывы водородная вода против хронической боли водородная вода энергия водородная кружка водородный генератор водородный генератор - генератор водородной воды генератор водородной воды h2life грипп кружка водородная купить генератор водородной воды н2voda насыщенная водородом вода овп вода овп воды статьи
Научные иследования
о водороде и водородной воде
почему тритановая колба лучший материал для водородного генератора
117 просмотр (ов)
2.7.2024

Выбирая водородный генератор, всегда обращайте внимание на материал колбы. Это основа долговечности и безопасности прибора. Почему тритановая колба считается лучшим материалом для водородного генератора? Разбираемся в нашем материале! В одном из наших материалов о выборе водородного генератора, мы уже писали, что тритан считается самым безопасным и долговечным материалом. Тритановая колба отличается особой прочностью, экологичностью и

какую воду не рекомендуется использовать для водородного генератора
324 просмотр (ов)
1.25.2024

Наши клиенты часто задают нам вопрос, какую воду можно использовать для генерации, а какую нельзя. Сегодня говорим о том, какую воду не рекомендуется использовать для водородного генератора. Водородный генератор – прибор нового поколения для создания чистой водородной воды в домашних условиях. Часто срок службы прибора и качество воды, которую вы получите, зависит от того, какую

что такое свободные радикалы
257 просмотр (ов)
1.11.2024

Окислительный стресс – главная причина 90% заболеваний во всем мире. Главную роль в разрушительных процессах окисления клеток играют свободные радикалы. Что такое свободные радикалы и какое влияние оказывают на организм? Читайте в новом материале! О свободных радикалах не слышал только ленивый. Хайп вокруг окислительного стресса и вредоносного влияния свободных радикалов на наше здоровье не утихает